有3个x值的单调区间怎么求?

网上有关“有3个x值的单调区间怎么求?”话题很是火热,小编也是针对有3个x值的单调区间怎么求?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1.定义法

例题 已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。

解 分析函数在R+上的单调性

任取x1>x2>0

Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2)

=(X1-X2)(X1^2+X1X2+X2^2-1)

令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0

因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1

当3X2^2-1>=0时 即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的

同理 当3X1^2-1<=0时 即X1<=根号3/3时 y1-y2<0 函数是递减的

故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3)

因此 a=根号3/3

一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。

2.图像法

例题 求y=x+3/x-1的单调区间

解 函数定义域为(-,1)并(1,+)

Y=X+3/X-1=X-1+4/X-1=1+4/X-1

由图像可知函数在(-,1)和(1,+0)上递减。

函数的图像是解决这类问题的关键。

3.性质法

性质:增+增=增 减+减=减

y=f(x)与y=kf(x) 当k>0 有相同的单调性 当k<0有相反的单调性

y=f(x)(y>0)与y=k/f(x) 当k>0 有相反的单调性,当k<0 有相同的单调性

例题 求y=x^3+x的单调区间。

解因为y=x是增函数,当x>=0时,y=x^3是递增的,当x<0时,y=x^3是递增的,所以y=x^3是R上的增函数。

由性质可知,函数y=x^3+x的单调区间为R.

4.复合法

u=p(x) y=f(u)复合后的函数为:y=f(p(x))它们的单调性为:同增异减。

例题 求y=根号(x-1)(x+1)的单调区间。

解 令u=(x-1)(x+1) 则y=根号u

当x>=1时 u=(x-1)(x+1)递增

当x<=-1时 u=(x-1)(x+1)递减

Y=根号u递增

所以 原函数的单调增区间为[1,+)

减区间为(-,-1]

函数的单调性中同增异减怎么理解

奇函数关于原点对称,就像太极图,比如y=x。

偶函数关于Y轴对称,比如y=|x|。

增函数就是Y随X增大而增大,比如 y=x

减函数是Y随着X增大而减小,比如y=1/x。

引理1:已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.

证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.

因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).

因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],

故函数y=f[g(x)]在区间(a,b)上是增函数.

引理2:已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.

证明:在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.

因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).

因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.

扩展资料

若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R的值域;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

参考资料:复合函数_百度百科

关于“有3个x值的单调区间怎么求?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(10)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 第五子赫的头像
    第五子赫 2025年12月09日

    我是百姓号的签约作者“第五子赫”

  • 第五子赫
    第五子赫 2025年12月09日

    本文概览:网上有关“有3个x值的单调区间怎么求?”话题很是火热,小编也是针对有3个x值的单调区间怎么求?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...

  • 第五子赫
    用户120901 2025年12月09日

    文章不错《有3个x值的单调区间怎么求?》内容很有帮助

联系我们:

邮件:百姓号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信