网上有关“三角函数化简后公式”话题很是火热,小编也是针对三角函数化简后公式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
sin(-α)= -sinα;
cos(-α) = cosα;
sin(π/2-α)= cosα;
cos(π/2-α) =sinα;
sin(π/2+α) = cosα;
cos(π/2+α)= -sinα;
sin(π-α) =sinα;
cos(π-α) = -cosα;
sin(π+α)= -sinα;
cos(π+α) =-cosα;
tanA= sinA/cosA;
tan(π/2+α)=-cotα;
tan(π/2-α)=cotα;
tan(π-α)=-tanα;
tan(π+α)=tanα
扩展资料三角函数化简与求值时需要的知识储备:
①熟记特殊角的三角函数值;
②注意诱导公式的灵活运用;
③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值.
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
参考资料:
三角函数化简的口诀或技巧之类的
1、化为一个三角函数
如:f(x)=sinx+√3cosx=2sin(x+π/3)
最大值是2,最小值是-2
2、利用换元法化为二次函数
如:f(x)=cosx+cos2x=cosx+2cos?x-1=2t?+t-1 其中t=cosx∈[-1,1]
则f(x)的最大值是当t=cosx=1时取得的,是2,最小值是当t=cosx=-1/4时取得的,是-9/8
扩展资料寻找函数最大值和最小值
找到全局最大值和最小值是数学优化的目标。如果函数在闭合间隔上是连续的,则通过最值定理存在全局最大值和最小值。此外,全局最大值(或最小值)必须是域内部的局部最大值(或最小值),或者必须位于域的边界上。
因此,找到全局最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小)一个。
三角函数的定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²;+b²;) , c+√(a²;+b²;)]
周期T=2π/ω
参考资料:
高一数学三角函数的化简有什么技巧,有些超复杂看到都头晕,求高手指点?
奇变偶不变,符号看象限。例:sin(π-x)由于π是π/2的偶数倍 所以可化为sinx 若为π/2的奇数倍 则sin化为cos 符号问题sin π-x 将x看为锐角则π-x在第二象限 sin在一,二象限为正 所以化为正的sinx ,cos在一,四象限为正,转化规则同上
从“角”入手,“复角”化为“单角”,利用“升幂公式”。
从“幂”入手,利用“降幂公式”
从“名”入手,“异名化同名”。
从“形”入手,利用“配方法”
1、以变角为主线,注意配凑和转化;
2、见切割,想化弦;个别情况弦化切;
3、见和差,想化积;见乘积,化和差;
4、见分式,想通分,使分母最简;
5、见平方想降幂,见“1±cosα”想升幂;
6、见sin2α,想拆成2sinαcosα;
7、见sinα±cosα或 sinα+sinβ=p
cosα+co见a sinα+b cosα,想化为 的形式
sβ=q 想两边平方或和差化积
见cosα·cosβ·cosθ····
cosα+cos(α+β)+cos(α+2 β )…
关于“三角函数化简后公式”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是百姓号的签约作者“浅若夏沫”
本文概览:网上有关“三角函数化简后公式”话题很是火热,小编也是针对三角函数化简后公式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。sin(-α)...
文章不错《三角函数化简后公式》内容很有帮助